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Abstract
In the current long-term care environment, there is a shortage of manpower and a high turnover rate of staff.
Therefore, residential institutions are eager to build an effective Internet of Things integration mechanism to assist insti-
tutions with automatic sensor detection and early warning capabilities. Although Internet of Things facilities have enabled
prompt notification and warning of emergency events, the following problems exist when implementing Internet of
Things in the facilities: (1) low compatibility between sensors has led to excessive installation costs; (2) warning systems
that are based on fixed threshold values and lack of flexibility can cause false or omitted reports that result in the incap-
ability of reflecting real conditions and additional labor costs would be required. This study uses a medical-grade Internet
of Things module that can calculate the environmental values with edge computing to generate different levels of alarms
by combining the index-weighted moving average method to dynamically calculate the optimal threshold value for the
environment. It takes 2 months to collect data from care institutions. The average F1-Score obtained in different envir-
onments is between 0.46 and 0.88. The results show that compared with using a fixed threshold, this method can effec-
tively reduce sensor error notifications and missed notifications.
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Introduction

The rapid growth of the aging population has prompted
increased demand for medical resources. According to
World Population Prospects published by the World
Health Organization (WHO) in 2019, those aged ø 65
years account for 9% of the total global population,
and this proportion is expected to increase to 16% by
2050. This means that one of every six people will be
older than 65 years. In conventional geriatric care mod-
els, older adults are generally assembled in large medi-
cal centers to receive care services. Many studies have
applied Internet of Things (IoT) technologies to facili-
tate health care providence.1,2 Aware of the effects of

rapid population aging on society and families, govern-
ments have focused on establishing policies related to
geriatric long-term care (LTC). LTC policies have been
researched, developed, and planned through diverse
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administration systems. These policies mainly support
diverse care provision by families, communities, and
residential institutions to gradually expand their range
of care services to benefit older people; reduce depen-
dence on services in places with concentrated resources,
such as large medical centers; distribute medical
resources to meet future demands for LTC; and allevi-
ate families’ care burdens. Specifically, the responsibil-
ities of caregivers in residential institutions involve not
only general nursing services but also monitoring of
patients’ physiological data, which is a crucial compo-
nent of protecting the health of older adults. In conven-
tional care models, data are recorded manually by
nursing staff; reviewing medical records required labor-
ious searches through hard copies of documents, which
disrupt and increase the time intensiveness of long-term
patient monitoring, further exacerbating the shortage
of medical human resources. Patient life and safety are
the focus of institutions. Patients residing in LTC insti-
tutions generally consist of older adults with chronic
diseases who require long-term medical services. In
instances of disasters, these older adults are less autono-
mous or competent than younger people in their
responses. Therefore, additional attention is required
regarding awareness of disaster prevention and seeking
shelter, as well as effective public safety. Although fires
cannot be prevented completely, the golden hour for
saving patients can be extended. Since long-term care
facilities are not like hospitals with many manpower
units, they are a part of external organizations.
Therefore, in order to solve the problem of human
resources, scholars such as Laplante et al.3 explored
how to build a caring healthcare system, designed to
provide a good healthcare environment for patients,
professional caregivers, and families through a struc-
tured framework of the IoT, which has ensured the
safety of patients’ lives; by contrast, to monitor institu-
tional environmental safety, this study used the expo-
nential weighted moving average (EWMA) control
chart4 in statistical process control (SPC)5 to analyze
data on temperature, humidity, and air quality recorded
by sensors deployed in different environments. The
upper and lower control limits of the environmental
data were analyzed using several sets of sensor signals
to determine the optimal threshold value for an area
and send alarm messages to institution staff in instances
of environmental abnormalities to resolve incidents.

In the present age of consistent breakthroughs and
innovation in information technology, integrated cir-
cuit chips have become light and compact, and they
have been integrated with emerging IoT technologies.
The use of digital and wireless network transmission is
gradually driving written and manual operation proce-
dures in institutions toward smart technologies.
Moreover, the prevalence of cloud storage has contrib-
uted to the development of IoT concepts in mobile

health care.6,7 Although IoT devices have been incor-
porated in institutions, integration of such devices
remains difficult due to the devices having different
brands. Institutions that require physiological monitor-
ing devices for care and data tracking have a diverse
selection of brands to select from. However, the com-
munication modes of these devices may differ. For
example, devices using Wi-Fi, Bluetooth low energy
(BLE), and Zigbee are mostly wireless transmission
technologies used in daily life. To explore whether
chronic heart failure increases the ratio of hospitaliza-
tion among older adults, Fanucci et al.8 developed sev-
eral biomedical devices with Wi-Fi communication for
hospitals to monitor personal physiological data.
Ohmura et al.9 addressed nurses’ caring behaviors and
deployed several wearable Bluetooth devices called ‘‘B-
packs’’ inside hospitals to track and record health care
services provided in the hospital.

Currently, several front- and back-end technologies
integrated with biomedical10–12 and environmental sys-
tems13,14 have been produced on the basis of IoT con-
cepts. These technologies are suitable for institutions
that specialize in LTC and data tracking. However,
technologies in the biomedical and environmental fields
remain separate. For these institutions, introducing sev-
eral incompatible devices for wireless data transmission
would involve cost-intensive installation and communi-
cation incompatibilities among data integration sys-
tems. Therefore, integration is indispensable. By
considering the crucial factors of rescuing and preser-
ving life as well as data tracking, this study had the fol-
lowing three goals:

� Combine wireless transmission technologies with
cross-domain gateways to connect biomedical
and environmental sensors and develop edge
computing technology to determine signal condi-
tions in advance, thereby increasing time-
effectiveness in two-way signal transmission.

� Use sensor data that were analyzed and integrated
using the control chart of the SPC to dynamically
calculate optimal threshold values monthly to
reduce false and missed alarms from the site and
accurately send alarm messages to institution staff.

� Process data correspondingly, provide assistance
according to data on emergencies and the degree
of urgency transmitted from the sensor, develop
smart care services in residential institutions, and
create adequate living environments for geriatric
care.

Related work

This section consists of four parts. Section ‘‘Application
and integration of information and communications
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technology in medicine’’ explores the development of
information and communications technology applica-
tions in the medical field; section ‘‘Cross-domain gate-
way designs’’ analyzes the internal design of cross-
domain gateways; section ‘‘Embedding and application
of edge computing’’ briefly describes the relevant
research on using edge computing to reduce redundant
data; and section ‘‘Dynamic threshold adjustment’’
explains current methods of data monitoring in combi-
nation with SPC.

Application and integration of information and
communications technology in medicine

This study focused on institutions requiring LTC ser-
vices. IoT technologies have been introduced to resolve
recording problems but have yet to be informationized,
and modes of integrating health care and information
in large medical centers were imitated. For example,
Kodali et al.15 integrated IoT into the medical systems
of hospitals. They used Zigbee wireless transmission
technology, which not only minimized power consump-
tion and extended the battery life of devices but also
integrated the medical information of various distribu-
ted devices. Information was transmitted to a cloud
network, which collected, stored, and analyzed large
amounts of data, and activated alarms according to
situations thereby enabling the regular tracking of
patients’ physiological parameters while increasing care
quality and reducing care costs.

In 2019, Kang et al.16 designed a questionnaire to
learn about demand among 1086 medical staff for IoT
devices; the questionnaire included items on patient
safety and hospital environment. The results indicated
that medical staff considered functions that enabled
IoT systems to conduct immediate tracking of patients’
physiological data and remote data transmission as the
most urgent demand requiring integration. This is
because medical staff must often evaluate patient stabi-
lity to rapidly understand and provide assistance for
changes in the patients’ situations. The study indicated
the large demand for embedded physiological data sys-
tems in institutions. Similarly, the study focused on the
connection between physiological measurement devices
and back-end health data platforms to reduce caregiver
workload.

Cross-domain gateway designs

The diversity of IoT applications and communication
protocols has increased the threshold for the integration
of IoT devices to a cloud by means of wireless transmis-
sion. A complete set of gateways for cross-domain com-
munication protocols are required to achieve data
transmission among different protocols in clinical prac-
tice. For example, Amiruddin et al.17 developed three

types of communication protocols in a cross-domain
gateway, selected the wireless transmission correspond-
ing to the communication protocols used by diverse
IoT devices, and integrated the data received by the
three communication protocols. In 2018, Vargas et al.18

proposed a design for an intermediate gateway layer
that involved the following steps: (1) data conversion:
JavaScript Object Notation was used as the standard
data format; (2) data processing: information process-
ing was conducted to reduce delay time; (3) protocol
conversion: data were matched selected, and used
according to different communication protocols; (4)
data storage: device data were uploaded to a cloud
archive through Ethernet using the TCP/IP transmis-
sion mode for cloud computing and data storage. In
2015, Al-Fuqaha et al.19 introduced IoT technologies,
protocols, and procedures to explain exchange and
matching among different communication protocols as
well as their application in IoT services. This study
referenced and combined the intermediate transmission
structures in the aforementioned literature with MQ
Telemetry Transport (MQTT) lightweight data trans-
mission to establish the communication bridge between
the gateway and the cloud server for uploading sensor
data.

Embedding and application of edge computing

New communication network structures have been pro-
duced to respond to problems of delay and high
demand for network bandwidth. These problems occur
when numerous IoT devices send data through the
gateway to the cloud for computing. In residential insti-
tutions, when an emergency occurs in an immediate
physiological monitoring system, uploading data to the
cloud for computing and then to the emergency depart-
ment is time intensive in conventional communication
network structures. To solve this problem, edge tech-
niques are used to facilitate distributed implementation;
their similarities with the devices are used to facilitate
early response to urgent cloud computing needs to
remove redundant data and send only filtered data to
the cloud for complex analysis or permanent storage.
This reduces the transmitted data volume, power con-
sumption, network bandwidth, and delay.20,21 In 2015,
Rahmani et al.22 proposed a patient monitoring system
for medical environments; they used edge computing to
develop the Smart e-Health system and employed the
smart gateway UT-GATE to achieve distributed com-
puting in smart health care, thus improving services
involving medical data requiring immediate response.
In 2017, Morabito et al.23 used a lightweight edge gate-
way IoT to create a network of IoT devices that
enabled three functions, namely, expansion, intercom-
munication, and optimization. Ren et al.24 added a
core network layer to the IoT structure; during data
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transmission from the IoT device to the edge service
device (such as gateways, mobile phones, and comput-
ers), the core network layer was used to exchange and
process data, and the results were sent to the cloud for
access.

Currently, the embedding and application of edge
computing have reached certain extents of development
and effectiveness. This study developed a gateway with
edge computing functions as the transmission mode in
the IoT environment. Edge computing was used to
achieve distributed data processing, and the computa-
tion and analysis of patient physiological data or sensed
environmental data were performed immediately. For
example, Mahmoud et al.25 introduced edge computing
and applied it to remote patient monitoring in health
care; simulations were conducted in environments with
four hardware configurations. The results indicated
that power consumption, bandwidth, and delay in
transmission could be effectively reduced using a fog
computing environment, which was particularly evident
in complex hardware configurations. In addition, in
2017, Gia et al.26 used a health monitoring system
based on IoT concepts to track an individual’s health
situation. By means of edge computing through the
gateway, they reduced the delay in the transmission of
sensor signals to the system and subsequently to the
remote cloud server. The results indicated that edge
computing increases transmission efficiency and pro-
vides immediate responses with minor delay.

Dynamic threshold adjustment

In the clinical areas of residential institutions, the main
goal of deploying diverse devices is to preserve life,
health, and quality in patients’ health and safety.
However, simultaneous monitoring by numerous
devices and their abundant alarms causes power con-
sumption by edge nodes and overloads the band-
width.27,28 In addition, the alarms are not entirely
accurate in conveying the emergency aid patients

actually require.27,29 False or missed alarms increase
the distrust of caregivers and patients’ families toward
IoT devices that monitor health status as well as
toward the institution care environment. Therefore, the
devices must have a decisive function for judging inci-
dent reports. Regarding safety considerations for
ensuring the accuracy and immediacy of alarms in the
care environment, the optimal effect was achieved by
collecting data with relevant devices and using adjusta-
ble threshold value settings.

In clinical experiments, criteria for the assessment
tools and processes employed in different situations
have been established regarding alarm systems that
send alarm messages, such as EEMUA-191 and ISA-
18.2.30,31 Alarm system performance is assessed using
four indexes, namely, the averaged alarm delay, missed
alarm rate (MAR), false alarm rate (FAR), and chat-
tering. SPC can be adopted in non-controlling situa-
tions to improve alarm system performance. Control
charts with set upper and lower control limits are com-
monly applied in various industries to monitor the
transmission of device data. This includes EWMA con-
trol charts, which are primarily used to monitor minor
changes in the data. To enable the system to effectively
change its settings in correspondence with difference
situations, the upper and lower control limits of the
control chart are adjusted according to historical data.
This method is compared with other statistical pro-
cesses for threshold control as shown in Table 1.
Although other methods are also used for threshold
adjustment, in this study, the analysis of data from
long-term care institutions requires consideration of the
effect of the initial threshold and each data is calculated
independently, so the weighted moving average method
is more appropriate. Freitas et al.32 used the EWMA
control chart to monitor toilet water consumption with
different flush buttons, and sought reasons when the
warning line was surpassed. Aquino proposed an
EWMA-based system to monitor driver fatigue by
detecting a vehicle’s lane departure. The system detects

Table 1. Adaptive threshold literature comparison table.

Method Applications Result Years

Kalman filtering35 Electrocardiogram signal feature This method is highly adaptive to peak
candidates and insensitive to initial
value of threshold.

2020

Semi-Markov process and
exponential weighted moving
average36

Vibration sensor’s signals of the V94-2
gas turbine

Compared with a fixed threshold, this
method can greatly reduce the
occurrence of false positives and false
negatives.

2020

Peak statistics-based and novel
adaptive complementary37

The signal denoising of IoT signal
processing

The results show that the proposed
denoising algorithm helps to improve
the performance of multi-sensor data
fusion.

2021
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vehicle trajectory using acceleration sensors, which
operated in coordination with the upper and lower con-
trol limits of the alarm value in the control chart to
evaluate fatigue.33 Aparisi and Carlos Garc�ıa-D�ıaz34

employed a genetic algorithm to optimize parameter
adjustment in EWMA and multivariate EWMA charts
and obtain optimal statistical results. Dynamic adjust-
ments of threshold values using such a method are suit-
able for the institutions of interest in this study, which
aim to establish a mechanism for fine-tuning emergency
alarm values and acquire optimal settings for different
situations.

Methodology

On the basis of preserving patient life, health, and care
quality, several IoT devices were integrated with smart
care services in residential institutions to increase the
convenience for nursing staff to control patient data
and institutional environments. The system context dia-
gram is presented in Figure 1; the user steps are (1) use
IoT nodes of different communication methods to mea-
sure physiological and the environmental data, then
uploaded the data to the gateway; (2) integrate the data
of each IoT node through a multiple-communication
gateway and use the set alarm threshold to determine
whether the data branches was toward an emergency
alarm or the cloud service; (3) saving device data in the

archive of the cloud server and presenting such data in
charts on the health data platform; (4) apply the col-
lected data to adjust the alarm threshold of the envi-
ronmental device; (5) designate a department to which
the alarm is reported to according to the alarm levels
set on the device; and (6) remove the reminder window
from the data platform after the designated department
resolved the incident.

Application and planning of residential institution
care

Although data recording by IoT devices in institutions
are relatively complete and transmit detailed informa-
tion, viewing the data by entering respective systems is
inconvenient for these institutions. In addition, the
devices are loosely deployed without intention to inte-
grate device data. Therefore, a joint test was conducted
on IoT devices conventionally used in institutions,
which mainly involve patient physiological measure-
ment and institution environmental monitoring. The
data of each wireless communication device was inte-
grated through the cross-domain gateway and longi-
tudinally linked to the health data platform to enable
institution nursing staff to manage both patients and
the overall environment, achieving the three core con-
cepts of preserving life, health, and quality.

Figure 1. System context diagram.
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Physiological measurement devices. To effectively protect
the health of patients in different beds of the institu-
tions, measurement devices for the long-term recording
of personal physiological data were employed, namely,
blood pressure monitors and forehead thermometers.
By using these devices to record the patient’s data daily
and having the data transmitted to the health data plat-
form, professional nursing staff can effectively track
the health statuses of older adult patients and regularly
perform evaluations to enact preventive care. These
devices can be set to detect second-level emergencies in
the hierarchy of alarms. The threshold value, which
also serves as the alarm activation value of the blood
pressure monitor and the forehead thermometer, was
referenced from the hypertension standard stipulated
by the WHO (systolic blood pressure .140 mmHg,
diastolic blood pressure .90 mm Hg, at the same time,
we remind the test subject to follow the American
Heart Association’s38 recommended measurement
guidelines: (1) remain calm, (2) sit upright and keep the
measured hand flat, (3) try to keep the same measure-
ment period each day, (4) measure multiple sets of data
at the same time, as a standard procedure) and the
standard for fever as stipulated by the Ministry of
Health and Welfare, Taiwan (body temperature
.37.5�C). In addition, according to Chen,39 body tem-
perature has become one of the most essential vital
signs for clinical diagnosis and daily health care. In the
same study, Wunderlich et al. showed that the average
axillary temperature measured in 25,000 subjects was
37.0�C. The normal temperature is usually between
36.2�C and 37.5�C.

Environmental monitoring device. The hierarchy of alarm
procedures for the environmental monitoring device in
this study ranged from ‘‘most urgent’’ to ‘‘not urgent’’
events; temperature, humidity, and air quality were
monitored. In a general living environment, air moni-
toring is mainly based on carbon dioxide, carbon mon-
oxide, natural, and so on. If further data collection is
needed, more advanced reception design will be based
on the detection of suspended particulates; the more
commonly used sensors are Arduino Sensors MQ-135
or MH-Z14A. The threshold value was set in terms of
the dynamic threshold; the IoT device could intelli-
gently send signals to the backend to trigger an emer-
gency alarm in instances of an accident, accelerate the
reporting of patients, and prevent delays in reporting
due to over-panic and physical discomfort, thus preser-
ving patient life and care quality.

Design of edge computing and alarm threshold

In LTC institutions, events that trigger an emergency
alarm often endanger patient safety. In an emergency,

although a crisis can be resolved by informing the
emergency center immediately, medical resources might
be wasted if an incident is not urgent. Therefore,
reporting should be conducted in phases according to
the degree of danger. The degree of danger can be
determined using the threshold settings on IoT devices,
and the problem of false and missed alarms can be
solved with accurate threshold values. However, a sin-
gle fixed threshold value would yield many false and
missed alarms, because some situations may not reach
a threshold that requires an alarm. Moreover, a single
threshold value cannot be corrected when caregivers
respond to actual situations, which would increase the
burden on caregivers, the emergency department, and
families. Therefore, we used the EWMA method for
threshold value adjustment to appropriately address
situations in the institution environments and reason-
ably revise thresholds. This mechanism was used to
fine-tune the alarm threshold to match it with actual
situations in residential institutions.

Multiple-communication mode of edge computing. In con-
ventional data transmission, messages are sent to a
remote server for analysis, and the type of alarm
selected is determined by the result. This process wastes
transmission time and consumes large amounts of data.
The prime priority in residential institutions is to
inform caregivers and report incidents to the emergency
department as soon as possible. To achieve this goal,
this study used the concept of distributed computing to
a gateway, which included various wireless communica-
tion modes such as Wi-Fi, BLE, and Zigbee. The cross-
domain gateway hardware is depicted in Figure 2.
Emergency judgment was performed within the gate-
way though programming, and crisis signals were sent

Figure 2. Cross-domain gateway.
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to the emergency department according to the publish/
subscribe mechanism of MQTT, which enabled rapid
reporting.

Edge computing and analysis were first conducted
on the device signals. In clinical usage, alarms are sent
immediately not only when devices detected emergen-
cies. Rather, alarm levels were judged through commu-
nication among multiple devices and analysis of data
groups; the degrees of reporting were classified mainly
according to ‘‘preserving life’’ (most urgent), ‘‘preser-
ving health’’ (secondary urgent), and ‘‘preserving qual-
ity’’ (not urgent). The alarm value of the device was set
in accordance with WHO standards. Figure 3 presents
the phases of alarm procedures used in this study. The

method of reporting was adopted according to the
urgency of each incident, and the initial step was
selected subsequently. The phases of reporting consisted
of the following four steps: (1) a notification appears on
the system window; (2) a message is sent to the care-
giver or the system manufacturer; (3) a message is sent
to institution supervisors; and (4) a report is sent to the
emergency center. Situation 4-Fire (the sensor data for
temperature, humidity, and air quality all surpassed
thresholds) was the most urgent situation (level 3),
which required rapid reporting to the emergency center;
Situation 3 represented secondary urgent events (level
2) and required the caregiver to make an overall judg-
ment on the numerical physiological values; Situations

Figure 3. Branching diagram for alarms in phases.
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2 and 1 were not urgent (level 1), and notifications were
mainly used to remind institution staff to pay attention
to general protocol or IoT device connections. The
reporting of abnormalities was accelerated through the
hierarchical alarm procedure. An incident was reported
to the next higher level after the system determined
whether the incident was solved to ensure that incident
alarms were addressed and completely resolved by med-
ical professionals.

Emergency alarm threshold. This study used SPC to moni-
tor the transformation of environmental numerical val-
ues to remind institution staff to enact corrective
measures when a situation was beyond control and to
remove the causes of changes, such as fire and excessive
carbon monoxide. A control chart mainly comprises
the central line, which represents the mean of the data,
and the upper and lower control limits, which are used
to determine data range limitations. As previously dis-
cussed in section ‘‘Dynamic threshold adjustment,’’
EWMA has been calculated independently of the data
and does not require the fusion of multiple data, and is
influenced by the initial thresholds when calculating the
fitness thresholds. We selected the EWMA control
chart for its wide applications in industrial control and
financial monitoring and because its threshold values
are calculated according to historical data, which
enable the detection of small changes in a time series.
As demonstrated in equation (1), z is the statistic of the
EWMA, y is the weight for adjusting recent data, and x
is the current observed value

zi =yxi + 1� yð Þzi�1 ð1Þ

FAR was defined as a triggered alarm under normal
conditions in a particular situation. By contrast, MAR
was defined as the absence of an alarm under abnormal
conditions. The situations of patient health and institu-
tion environment varied according to the clinical con-
texts of residential institutions. Therefore, the threshold
value settings for devices used in different situations
should be adjusted accordingly based on the monitor-
ing conditions to make customized judgments.

In the calculation of the center line and the upper
and lower control lines, a trial calculation will be car-
ried out according to equations (2)–(4) into the institu-
tion’s past month data, where m0 is the initial average
value of the data, and the initial average data will use
exponentially weighted average. The value is used as
the starting value (z0 =m0), L is the unit standard
deviation multiple of the average of the control limit
distance, and this parameter can be adjusted according
to the actual over-standard sensitivity, usually equal to
3, k is the number of data samples, and s is the stan-
dard deviation of the overall data. In order to avoid
severely affecting the movement range of the upper and

lower limits, the reference scholar uses two control
variables for additional weight restrictions,40 such as
equations (5) and (6), use the variables a and b—a to
maintain the degree of movement of the control range
and b to limit mk the degree of influence

UCL0, k =m0 + Ls

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y

2� yð Þ 3 1� 1� yð Þ2k
h ir

ð2Þ

CLk = zk . . . . . . k= 0, . . .Nf g ð3Þ

LCL0, k =m0 � Ls

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y

2� yð Þ 3 1� 1� yð Þ2k
h ir

ð4Þ

UCLk =a+bmk + Ls

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y

2� yð Þ 3 1� 1� yð Þ2k
h ir

ð5Þ

LCLk =a+bmk � Ls

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y

2� yð Þ 3 1� 1� yð Þ2k
h ir

ð6Þ

The threshold value was designed and fine-tuned in
accordance with this mode, which reduced the occur-
rence of false alarms. Appropriate threshold adjustment
was critical for residential institutions using IoT devices
for monitoring. In the actual test, such a mechanism
not only achieved suitable accuracy in automatic moni-
toring for nursing staff but also ensured resident safety
in precise manner and provided an assuring care envi-
ronment for patients’ families.

Algorithm 1 represents the mechanism for setting
the dynamic threshold using the aforementioned equa-
tion. The type of IoT device is input on the first line as
the signal source in threshold setting; the fourth line
indicates the weight parameters used in the algorithm

Algorithm 1. Threshold setting mechanism.

Input: Physiological/Environmental Equipment Signal
Output: The most suitable threshold
Class GetDeviceClass(data);
Device GetDevice(data);
AdaptiveThreshold=0;
y= 0:2

If Class== Physiological equipment Then
If Device== Sphygmomanometer Then

AdaptiveThreshold 140;
Else If Device==Forehead thermometer Then

AdaptiveThreshold 37.5;
End

Else If Class==Environmental equipment Then
While k\=data.length do

UCLk=LCLk =m0 6 Ls

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y

2�yð Þ � 1� 1� yð Þ2k
h ir

;

CLk =Zk . . . . . . k= 0 . . . ,Nf g;
k k+ 1;
(loop)

End
Adaptive Threshold=CLn;

End
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calculation; the 5th–19th lines are the discriminants
that set threshold values according to the IoT device
types. The parameters of the physiological devices were
set according to international official standards, and
the environmental devices were set using exponential
weighted average calculations.

Result

This study successfully deployed physiological and envi-
ronmental monitoring devices in a clinical residential
institution for LTC and developed a system that fea-
tured a cross-domain gateway for the intelligent inte-
gration of environmental sensor signals. The system
functions include authority control, patient manage-
ment, setting device activation times, alarm reminders,
and visual data chart presentation. In addition, respon-
sive web design functions were added to ensure that the
optimal layout configuration was available in different
browsers. The results of deploying monitoring devices
in the clinical environment and the dynamic thresholds
are discussed subsequently.

Experiment environment

In this study, physiological and environmental moni-
toring devices were mainly deployed on the ninth and

first floors of a clinical residential institution for LTC.
Figure 4 presents the overall system design and experi-
ment procedures. First, devices were deployed in two
steps: (1) the cross-domain gateway was first linked to
mains electricity and connected to the area network,
and the flashing indicator light meant a successful con-
nection for transmitting data to the backend and (2)
physiological measurement (blood pressure monitor
and forehead thermometer) and environmental moni-
toring devices (sensors for temperature, humidity, and
air quality) were deployed on the ninth and first floors
to monitor changes in the environmental numerical val-
ues. Figure 5 presents the deployment of sensors in each
area on the ninth floor, which included four wards (4.1
3 3.3 m2), each of which had two sensor sets; a lobby
(7.2 3 2.7 m2) with four sensor sets; and a bathroom
(4.2 3 2.6 m2) with three sensor sets. Figure 6 presents
the deployment of the three sensor sets in the kitchen
(2.2 3 7.6 m2) on the first floor. The number of sen-
sors deployed depended on the dimensions of the area;
data authenticity and accuracy during the monitoring
of environmental numerical values in an area were
ensured by deploying multiple sensors sets. Second,
software deployment involved the setting of the cloud
server and installation of mobile applications; patients
in each bed were recognized through the QR code scan-
ning function in the application, and physiological data

Figure 4. Deployment flowchart.

Figure 5. Deployment diagram for the ninth floor.
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from the devices were uploaded to the cross-domain
gateway for edge computing. The data were then sent
to the cloud archive after they were confirmed to be
normal. Third, signals from the environment were col-
lected every 5 min by the deployed sensors; physiologi-
cal signals were measured in the morning, at noon, and
in the evening. Finally, threshold values were adjusted
in the cloud server according to the environmental sig-
nals collected over the previous month to reduce the
FAR and MAR.

System test results

Because of its implications for personal safety, the
alarm thresholds for physiological signals could be
altered only after judgment by professional doctors.
Therefore, thresholds were set in this study in accor-
dance with international official standards. The numeri-
cal values for environmental signals collected by IoT
sensors in each area of the LTC institution were differ-
ent; using the same alarm threshold would cause false
and missed alarms. Therefore, the most suitable alarm
threshold for each area was adjusted using the EWMA
method, thereby enabling professional medical staff to
accurately and rapidly identify abnormalities requiring
resolution by using the system. The devices mainly
recorded the air quality of the lobby, bathroom, and
kitchen in the institution; the alarm threshold was
adjusted dynamically according to the environmental
data from the previous month, and the results of thresh-
old value adjustment by the system were tested.

The equations of the confusion matrix were
employed to verify the dynamic threshold adjustment
results. When an actual emergency event is correctly
identified and assessed, the threshold is true positive
(TP), and the system issues a warning. When a normal
event is correctly identified and assessed, the threshold

is true negative (TN). When a normal event occurs but
is assessed as an emergency event, a false positive (FP)
occurs; when an emergency event occurs but is assessed
to be a normal event, an FN occurs (Table 2).

Because emergency events are relatively rare in clini-
cal institutions, assessing the threshold on the basis of
accuracy only can generate extreme values. Therefore,
the F1 score was employed for threshold assessment
through the use of precision and recall in value calcula-
tion, demonstrated as follows:

Precision =
TP

TP+FP
ð7Þ

Recall =
TP

TP+FN
ð8Þ

F1 Score =
2

1
Precision

+ 1
Recall

ð9Þ

Figures 7–9 present the ambient air quality data
measured over 1 month in the common room, bath-
room, and kitchen, respectively. The x-axis indicates
time, and the y-axis indicates the air quality measured
during environmental monitoring; four sets of sensors
were placed in the common room because of its size,
whereas three sets of sensors were placed in the bath-
room and kitchen. Fault detection included several
simulated incidents of surpassed limits to verify the
accuracy of dynamic threshold adjustment.

The three data charts indicated minor differences in
the numerical values obtained by the sensor sets in the
same areas, implying the high accuracy of the environ-
mental numerical values. The air quality data chart was
adopted as an example of collected signals; the dynamic
thresholds for temperature and humidity of the areas
were also adjusted according to this method of data
averaging, and they served as the source of data that
were input in the EWMA method.

Table 3 presents the upper and lower control limit
values calculated with diverse weights by substituting
the common room air quality data into equations (2)–
(6). As illustrated in Table 3, it can be found that when
l = 0.15, the EWMA value will not exceed the upper
and lower limits, and most studies point out that the
commonly used weight is 0.2. Therefore, during the
planning process, the thresholds of the three fields are
adjusted to weight = 0.15 calculation.

Figure 6. Deployment diagram for the kitchen on the first
floor.

Table 2. Confusion matrix for event assessment.

Emergency (actual) Normal (actual)

Emergency (assessed) TP FP
Normal (assessed) FN TN

TP: true positive; FP: false positive; FN: false negative; TN: true negative.
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Figures 10–12 present the results of dynamic thresh-
old adjustment for temperature, humidity, and air
quality, respectively, in the common room, bathroom,
and kitchen. Use lines of different colors to distinguish

these three areas. In particular, the solid line represents
the data value and the dotted line represents the fixed
threshold. The dotted line represents the threshold
adjusted based on 1 month’s data. The figures indicate

Figure 7. Detected air quality in the common room.

Figure 8. Detected air quality in the bathroom.

Figure 9. Detected air quality in the kitchen.

Table 3. Exceeding control limit statistics in common room.

l Average Upper control
limit L= 3ð Þ

Lower control
limit L= 3ð Þ

Exceed the UCL / LCL

0.05 200.75 203.32 192.40 6
0.1 200.75 205.69 190.03 11
0.15 200.75 207.58 188.15 0
0.2 200.75 209.23 186.49 0
0.25 200.75 210.76 184.97 0
0.3 200.75 212.19 183.53 0

UCL: upper control limit; LCL: lower control limit.
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that the dynamic threshold values of the three areas
varied by monitored section.

Data were gathered for 2 months, and extreme values
were observed from the graph. After a discussion with
site personnel, we determined at what time there
appeared emergencies in the area. Therefore, in the early
stages of research, the extreme values were eliminated
before data collation and analysis, and the adaptive
threshold settings were repeatedly calculated within the
intermittent time. Finally, the adaptive threshold values
were verified with the fixed threshold values (Figures
10–12). The data were collected from the air quality sen-
sors in the bathroom, kitchen, and common room for
2 months. After the data in the first months were orga-
nized, the adaptive threshold settings devised in this
study were compared with the fixed threshold values.

Most studies have determined healthy air quality to
be 0–50 ppm. In the present study, the mean of the
data in bathroom from the first months was adopted as
the fixed threshold setting for the second month
(186.68 ppm). Because the bathroom remained a highly
humid environment for an extended time, the vapor

from hot water caused humidity, temperature, and
parts per million to rise, and false reports may have
resulted from the use of a fixed threshold value. Site
personnel confirmed that this was caused by the care-
giver providing a hot water bath to the patient outside
of the routine showering time, potentially leading to a
labor shortage. The method proposed in this study pro-
vides reminders to care supervisors not to use the bath-
room outside routine showering times.

As demonstrated in Figures 10 and 11, because of
the frequent use of cooking devices, water vapor was
generated and the humidity and temperature in the
kitchen were increased. As shown in the line chart, the
value was relatively low before 11/15 but high at other
times. Many false and missing alarm warnings were
yielded through use of the fixed threshold value,
whereas adaptive threshold settings yielded long-term
warnings; the adaptive EWMA threshold settings out-
performed the fixed threshold values as a warning
system.

Table 4 presents the FAR and MAR values by sub-
stituting the common room, kitchen, and bathroom’s

Figure 10. Dynamic temperature threshold adjustment.

Figure 11. Dynamic humidity threshold adjustment.
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sensor data into equations (7)–(9) to obtain confusion
matrix values. As illustrated in Table 5, the F1 score of
common room’s EWMA was between 0.72 and 0.88,
the F1 score of bathroom’s EWMA was between 0.46
and 0.66, and the F1 score of common room’s EWMA
was between 0.51 and 0.68.

Conclusion

This study employed the factory adjustment method of
false alarm sensitivity in a residential institution. The

IoT was applied to create a smart sensor environment
providing rapid reports of environmental value changes
to institutional personnel in various areas. The system
established in this study consisted of IoT equipment for
physiological and environmental detection, a mobile
device app, a cross-communication gateway, and a
cloud sever. Only the threshold values related to the
environment were adjusted in this study; we believe
that physiological warning thresholds should be set
according to the standards formulated by the WHO.
By contrast, the range of environmental warning

Figure 12. Dynamic air quality threshold adjustment.

Table 4. MAR/FAR statistics in three areas.

Area l Average MAR times FAR times

Common room—temperature 0.2 38.28 12 12
Common room—humidity 0.2 46.01 3 15
Common room—air quality 0.2 197.86 0 9
Bathroom—temperature 0.2 34.51 17 21
Bathroom—humidity 0.2 48.16 16 16
Bathroom—air quality 0.2 186.68 22 19
Kitchen—temperature 0.2 34.81 41 6
Kitchen—humidity 0.2 55.05 27 0
Kitchen—air quality 0.2 55.23 26 0

MAR: missed alarm rate; FAR: false alarm rate.

Table 5. Confusion matrix value statistics.

Area Precision Recall F1 score

Common room—temperature 0.7209 0.7209 0.7209
Common room—humidity 0.6809 0.9143 0.7805
Common room—air quality 0.7955 1 0.8861
Bathroom—temperature 0.5333 0.5854 0.5581
Bathroom—humidity 0.6667 0.6667 0.6667
Bathroom—air quality 0.4865 0.45 0.4675
Kitchen—temperature 0.8065 0.3788 0.5155
Kitchen—humidity 1 0.5091 0.6747
Kitchen—air quality 1 0.5185 0.6829
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thresholds should be adjusted according to the charac-
teristics of an area. Although unsatisfactory environ-
mental quality does not directly threaten human lives,
long-term exposure to hazardous air quality, neverthe-
less, damages physical and psychological health.
Therefore, information and communication technology
should be employed to provide prompt warnings
regarding abnormal physiological and environmental
data to institution personnel and to enable professional
caregivers to track patients’ health and site conditions
on a long-term basis.

Warning thresholds should change according to the
environment. Therefore, in this study, threshold values
were automatically adjusted according to historical
data through the use of exponentially weighted moving
averages, and six distinct weight values were employed
to calculate warning accuracy. The results indicated
that the accuracy was the highest when the weight
equaled 0.15; the weight value thresholds were adjusted
to the optimal state. Accordingly, dynamic threshold
adjustment enables optimally accurate issuance of
warnings. Edge computing was conducted to initiate
phased notifications in advance to enable the cloud ser-
ver to filter redundant data, thereby reducing data
travel time, effectively accelerating emergency notifica-
tions, improving the quality of care, and gradually
expanding the application of decentralized care.

On the basis of the artificial intelligence warning sys-
tem established for a residential institution in this
study, future studies can employ IoT facilities for
improving environmental quality (e.g. smart windows
and air purifiers) to enable automatic air conversion in
abnormal environments, thereby saving time from
manual abnormality solution. In addition, the relation-
ship between residents’ physiological data and the
weather should be considered, and machine learning
can be implemented to predict residents’ physiological
responses to the environment to enable the adjustment
of air quality to its optimal state. In addition, the moni-
toring of physiological data of patients and the envi-
ronmental data of the institution are confidential data.
Furthermore, it includes the protection of personal
data, the correctness of information transmission, and
the inability to be maliciously modified. The security of
the transmission process is extremely important. In the
current IoT architecture, if data are transmitted wire-
lessly, special consideration must be given to the impor-
tant issue of information security. Since there is no
consistent method and mechanism to ensure the secu-
rity of transmission that can be followed by residential
organizations, there are still many deficiencies in the
security of data transmission, and most of them rely on
hardware and software firewalls to establish a basic
security and protection mechanism for information
data. What we can do now is not only to establish the
above security mechanism, but also to train the users

on the basic information security concept, and to iden-
tify the personal information as much as possible. As a
whole, there are still many deficiencies in information
security in the IoT environment. In this article, we
focus on the actual operation of receiving physiological
and environmental signals, and the design of a simu-
lated environment to observe the results. In the future
research, we will carefully consider the data security
issues in data transmission with reference to other good
practices and should provide better solutions in time.
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